Remote Sensing of Cloud Droplet Number Concentrations

A piece of the puzzle towards understanding aerosol-cloud interactions

Kenneth Sinclair, Bastiaan van Diedenhoven, Brian Cairns, Mikhail Alexandrov, Richard Moore, Chris Hostetler

GISS Lunch Seminar

May 11th 2016

Introduction

Will focus on:

- Technique the Research Scanning Polarimeter (RSP) uses to retrieve Cloud Droplet Number Concentration (CDNC)
- Comparison with the Cloud Droplet Probe
- 1st deployment of the North Atlantic and Marine Ecosystems Study (NAAMES)

Motivation

Aerosol-cloud interactions

- Twomey [1974] recognized the connection between increasing aerosol particle number concentration and
 - (1) decreasing droplet size
 - (2) increasing cloud droplet number concentration
 - (3) increasing cloud reflectance
- Results in changes to the radiative properties of clouds
- Also impacts cloud evolution, precipitation, local and global climate
- Clouds have the potential to cause significant climate feedbacks

Motivation

Aerosol-cloud interactions

- Twomey [1974] recognized the connection between increasing aerosol particle number concentration and
 - (1) decreasing droplet size
 - (2) increasing cloud droplet number concentration
 - (3) increasing cloud reflectance
- Results in changes to the radiative properties of clouds
- Also impacts cloud evolution, precipitation, local and global climate
- Clouds have the potential to cause significant climate feedbacks

Motivation

Aerosol-cloud interactions

- Aerosol-cloud interactions, or the first indirect effect, can be partially observed through monitoring CDNC
- It is a key parameter that couples surface aerosol composition and chemistry on the one hand and cloud reflectivity on the other

Mission Overview

- North Atlantic Marine Ecosystems Study (NAAMES)
 - 4 aircraft and ship measurement campaigns over 5 years
 - Each campaign is aligned to a specific annual event in the plankton cycle
 - November 2015 deployment had 5 science flights
- Goals
 - Characterize plankton ecosystem properties
 - Determine how marine aerosols and boundary layer clouds are influenced by plankton ecosystems in the North Atlantic

Measurements

Research Scanning Polarimeter

- Prototype for Aerosol Polarimetry Sensor on the Glory satellite (2011)
- Along track scanning 152 viewing angles perscene $(\pm 60^{\circ})$
- 14 mrad field of view (~280 m on ground from 20 km alt.)
- Polarimetric and full intensity measurements in the visible and shortwave infrared over 9 bands: 410, 470, 555, 670, 864, 960, 1593, 1880, 2263 nm
- Measures aerosol: OT, R_{eff}, V_{eff}, refractive index, single-scattering albedo, morphology
- Measures cloud: OT, R_{eff}, V_{eff}, CTH, thermodynamic phase, ice asymmetry parameter, CDNC (?)

Measurements

LARGE's Cloud Droplet Probe (CDP-2)

- Forward-scattering optical spectrometer
 - Particle diameter (2-50 μm)
 - 30 size channels
 - Number concentration (0-2000 particles per cm³) 20% accuracy
 - Liquid water content
 - Effective diameter
 - Volume median diameter
- Typical sample area: 0.24 mm²
- Air speed range 10-250 m/sec

$$N = \frac{\tau}{\sigma_{ext} \Delta z}$$

- 1) Cloud Optical Thickness, τ
- 2) Extinction cross-section, σ_{ext}
- 3) Cloud Physical Thickness, Δz

$$N = \frac{\tau}{\sigma_{ext} \Delta z}$$

- 1) Cloud Optical Thickness (COT)
 - Use reflection function from 2 bands to determine cloud optical thickness
 - Non-absorbing 864 nm band
 - Absorbing 2263 nm band
 - COT is largely determined from reflection in the non-absorbing 864 nm band with some dependence on droplet radius

$$N = \frac{\tau}{\sigma_{ext} \Delta z}$$

2) Extinction cross-section

$$\sigma_{ext} = \pi r^2 Q_e$$

- Extinction efficiency, Q_e
- Radii use a normal size distribution described by r_{eff} and v_{eff}
- 864 nm *polarized* band gives r_{eff} and v_{eff}

RSP Size Distribution Retrieval

- Liquid clouds exhibit a strong rainbow feature originating from particles near cloud top
- The rainbow can be seen in polarized reflectances with scattering angles between 135° and 165°
- The shape of the rainbow is determined by single scattering properties of particles near cloud top, which correspond to a size distribution
- We fit a model to the observed rainbow observations to determine r_{eff} and v_{eff}

$$N = \frac{\tau}{\sigma_{ext} \Delta z}$$

- 3) Cloud Physical Thickness
 - Key idea is to relate in-cloud water vapor absorption to cloud physical thickness $(u_{in} \sim \Delta z)$
 - a) In-cloud water vapor, u_{in}
 - Absorbing 960 nm & non-absorbing 864 nm bands
 - b) Above-cloud water vapor, u_{above}
 - Absorbing 960 nm & non-absorbing 864 nm polarized bands
 - c) Cloud top
 - 1880 nm band

- We use a multi-angular contrast approach that uses the concept of parallax
- Distance from a stationary object is related to the displacement when observed from different viewing angles
- Similar to the photogrammetry used by MISR, but does not rely on identifying features
- Accurate knowledge of the geometry of the instrument and position of the aircraft is essential for stereo reconstruction

$$N = \frac{\tau}{\sigma_{ext} \Delta z}$$

- RSP median 2 droplets per cm³ (n=561)
- LARGE median 7 droplets per cm³ (n=1535)

- Showing median and 10th, 25th, 75th, and 90th percentiles
- Collocation is done using relatively few LARGE samples
- November 12th saw elevated CNDC throughout the day
- Remaining 3 days saw low CNDC levels (<22 droplets/cm³)

11/12/2015

- RSP median 48 droplets per cm³ (n=455)
- LARGE median 78droplets per cm³(n=621)

11/14/2015

- RSP median 7 droplets per cm³ (n=105)
- LARGE median 12 droplets per cm³ (n=133)

- High CDNC was measured for the first half of the 1st leg and the entire 4th leg
- Low CDNC for the 2nd and 3rd leg
- LARGE sampled near the low CDNC sections

- Good collocation
- RSP median 95 droplets per cm³ (n=670)
- LARGE median 104 droplets per cm³ (n=219)

• Parts of the flight leg had unrealistic cloud thickness

• Many RSP retrievals (1013), but poor collocation

Comparison with the Condensation Nucleus Counter

$$N_{RSP} = 0.07 \cdot N_{CNC} - 0.5$$

Summary

- 1) Showed the basis for determining CDNC using the RSP
- 2) Demonstrated that the RSP can distinguish between various CDNCs
- 3) RSP results compared well to the LARGE CDP
- 4) Found a positive relationship between CDNC and aerosol concentrations

Future Work

- Next deployment: May 14th June 4th
- HSRL retrieval & comparison
- Further relate RSP CDNC to aerosol concentrations

